Chemical Equilibrium Part 2 Review

- 1. Write the net ionic reaction for each of the following
 - (a) $AgNO_3 + NaCN \longrightarrow$
 - (b) $KCl + (NH_4)_2SO_4 \longrightarrow$
 - (c) $HgNO_3 + KBr \longrightarrow$
 - (d) $FeCl_3 + NH_4OH \longrightarrow$
 - (e) $Ca(NO_3)_2 + Na_2(C_2O_4) \longrightarrow$
 - (f) $Pb(NO_3)_2 + NH_4I \longrightarrow$
- 2. Calculate the K_{sp} for each of the salts whose solubility is listed below.
 - (a) $CaSO_4 = 5.0 \times 10^{-3} \text{ mol/L}$
 - (b) $MgF_2 = 2.7 \times 10^{-3} \text{ mol/L}$
 - (c) $AgC_2H_3O_2 = 6.1x10^{-2} \text{ mol/L}$
 - (d) $SrF_2 = 9.71 \times 10^{-4} \text{ mol/L}$
- 3. Calculate the solubility in mol/L of each of the following salts.

 - (a) AgCN $K_{sp} = 2.0x10^{-12}$ (b) BaSO₄ $K_{sp} = 1.5x10^{-9}$ (c) FeS $K_{sp} = 3.7x10^{-19}$

 - (d) $Mg(OH)_2 K_{sp} = 9.0x10^{-12}$
 - (e) Ag_2S $K_{sp} = 1.6x10^{-49}$
 - (f) CaF_2 $K_{sp} = 4.9 \times 10^{-11}$
- 4. Which of the following slightly soluble salts is the most soluble?
 - (a) PbS $K_{sp} = 8.4 \times 10^{-28}$

 - (b) PbSO₄ $K_{sp} = 1.8 \times 10^{-8}$ (c) Pb(IO₃)₂ $K_{sp} = 2.6 \times 10^{-13}$
- 5. For each of these substances, calculate the concentration of the metallic ion that can remain at equilibrium in a solution containing 1.0 x 10⁻⁴ mol/L of NaOH.
 - (a) $Cu(OH)_2$ $K_{sp} = 1.6 \times 10^{-9}$
 - (b) $Fe(OH)_3$ $K_{sp} = 6.0 \times 10^{-38}$
 - (c) $Mg(OH)_2$ $K_{sp} = 6.0x10^{-12}$
- It is found that 1.892x10⁻¹³ grams of the compound cadmium (II) sulphide (CdS) will dissolve in 350.0 mL of water to form a saturated solution. Using this data, calculate the value for the K_{sp} of CdS.